| $g(x)$ | $=$ | $\dfrac{\text{e}^{3x}+\text{e}^x}{\text{e}^{3x}+\text{e}^{2x}}$ |
| $=$ | $\dfrac{\text{e}^{3x}\left(1+\dfrac{\text{e}^x}{\text{e}^{3x}}\right)}{\text{e}^{3x}\left(1+\dfrac{\text{e}^{2x}}{\text{e}^{3x}}\right)}$ | |
| $=$ | $\dfrac{1+\text{e}^{x-3x}}{1+\text{e}^{2x-3x}}$ | |
| $=$ | $\dfrac{1+\text{e}^{-2x}}{1+\text{e}^{-x}}$. |
| $g(x)$ | $=$ | $\dfrac{1+\text{e}^{-2x}}{1+\text{e}^{-x}}$ |
| $=$ | $\dfrac{\text{e}^{-2x}\left(\text{e}^{2x}+1\right)}{\text{e}^{-x}\left(\text{e}^{x}+1\right)}$ | |
| $=$ | $\text{e}^{-2x+x}\times\dfrac{\text{e}^{2x}+1}{\text{e}^{x}+1}$. | |
| $=$ | $\text{e}^{-x}\times\dfrac{\text{e}^{2x}+1}{\text{e}^{x}+1}$. |
| $\displaystyle{\lim_{x\rightarrow+\infty}\dfrac{x^3+1}{x^2+x+1}}$ | $=$ | $\displaystyle{\lim_{x\rightarrow+\infty}\dfrac{x^3\left(1+\dfrac{1}{x^3}\right)}{x^2\left(1+\dfrac{x}{x^2}+\dfrac{1}{x^2}\right)}}$ |
| $=$ | $\displaystyle{\lim_{x\rightarrow+\infty}\dfrac{x\left(1+\dfrac{1}{x^3}\right)}{1+\dfrac{1}{x}+\dfrac{1}{x^2}}}$. |
| $\displaystyle{\lim_{x\rightarrow+\infty}\text{e}^{x}-3x}$ | $=$ | $\displaystyle{\lim_{x\rightarrow+\infty}\text{e}^{x}\left(1-\dfrac{3x}{\text{e}^{x}}\right)}$ |
| $=$ | $\displaystyle{\lim_{x\rightarrow+\infty}\text{e}^{x}\left(1-3\times\dfrac{x}{\text{e}^{x}}\right)}$. |