| $f'(x)$ | $=$ | $\dfrac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}$ |
| $=$ | $\dfrac{1\times(x-1)-(x+1)\times1}{(x-1)^2}$ | |
| $=$ | $-\dfrac{2}{(x-1)^2}$. |
| $AM^2$ | $=$ | $(x_M-x_A)^2+(y_M-y_A)^2+(z_M-xz_A)^2$ |
| $=$ | $(3+4t-1)^2+(7-2t+1)^2+(3t)^2$ | |
| $=$ | $(4t+2)^2+(8-2t)^2+9t^2$ | |
| $=$ | $16t^2+16t+4+64-32t+4t^2+9t^2$ | |
| $=$ | $29t^2-16t+68$. |