| $f'(x)$ | $=$ | $\dfrac{3}{15}x^2-\dfrac{4}{5}x+\dfrac{3}{5}$ |
| $f'(x)$ | $=$ | $\dfrac{1}{5}x^2-\dfrac{4}{5}x+\dfrac{3}{5}$ |
| $=$ | $\dfrac{1}{5}\left(x^2-4x+3\right)$. |
| $0$ | $\leq$ | $u_{n+1}$ | $\leq$ | $u_{n}$ | $\leq$ | $1$ | ||
| $f(0)$ | $\leq$ | $f(u_{n+1})$ | $\leq$ | $f(u_{n})$ | $\leq$ | $f(1)$ | car $f$ est croissante sur $[0\,;\,1]$. | |
| $0$ | $\leq$ | $u_{n+2}$ | $\leq$ | $u_{n+1}$ | $\leq$ | $\dfrac{4}{15}$ | par définition de $(u_n)$ et en vérifiant que $f(1)=\dfrac{4}{15}$ | |
| $\Rightarrow$ | $0$ | $\leq$ | $u_{n+2}$ | $\leq$ | $u_{n+1}$ | $\leq$ | $1$ | car $\dfrac{4}{15} <1$. |
| $v_{n+1}-v_n$ | $=$ | $\dfrac{n+1}{2(n+1)+1}-\dfrac{n}{2n+1}$ |
| $=$ | $\dfrac{n+1}{2n+3}-\dfrac{n}{2n+1}$ | |
| $=$ | $\dfrac{(n+1)(2n+1)}{(2n+3)(2n+1)}-\dfrac{n(2n+3)}{(2n+1)(2n+3)}$ | |
| $=$ | $\dfrac{2n^2+n+2n+1}{(2n+3)(2n+1)}-\dfrac{2n^2+3n}{(2n+1)(2n+3)}$ | |
| $=$ | $\dfrac{2n^2+3n+1}{(2n+3)(2n+1)}-\dfrac{2n^2+3n}{(2n+1)(2n+3)}$ | |
| $=$ | $\dfrac{2n^2+3n+1-(2n^2+3n)}{(2n+3)(2n+1)}$ | |
| $=$ | $\dfrac{1}{(2n+3)(2n+1)}$. |