| $5\ln(9)-4\ln(\sqrt{3})+\ln(1)=8\ln(3)$ | $=$ | $5\times2\ln(3)-4\times\dfrac{1}{2}\ln(3)+0$ |
| $=$ | $10\ln(3)-2\ln(3)$ | |
| $=$ | $8\ln(3)$. |
| $2x_C+y_C+2z_C$ | $=$ | $d$ |
| $2\times0+3+2\times2$ | $=$ | $d$ |
| $d$ | $=$ | $7$. |
| $2(2t+2)+(t+1)+2(2t+4)$ | $=$ | $7$ |
| $9t+13$ | $=$ | $7$ |
| $9t$ | $=$ | $-6$ |
| $t$ | $=$ | $-\dfrac{6}{9}$ |
| $t$ | $=$ | $-\dfrac{2}{3}$. |
| $SI^2$ | $=$ | $(x_I-x_S)^2+(y_I-y_S)^2+(z_I-z_S)^2$ |
| $=$ | $\left( \dfrac{2}{3}-2\right)^2+\left( \dfrac{1}{3}- 1 \right)^2+\left(\dfrac{8}{3}-4\right)^2$ | |
| $=$ | $\left( -\dfrac{4}{3}\right)^2+\left( -\dfrac{2}{3} \right)^2+\left(-\dfrac{4}{3}\right)^2$ | |
| $=$ | $\dfrac{16}{9}+\dfrac{4}{9}+\dfrac{16}{9}$ | |
| $=$ | $\dfrac{36}{9}$ | |
| $=$ | $4$. |
| $f'(x)$ | $=$ | $u'(x)v(x)+u(x)v'(x)$ |
| $=$ | $-0,5\text{e}^{-0,5x}(-4x^2-12x-40)+\text{e}^{-0,5x}(-8x-12)$ | |
| $=$ | $\text{e}^{-0,5x}(2x^2+6x+20)+\text{e}^{-0,5x}(-8x-12)$ | |
| $=$ | $\text{e}^{-0,5x}(2x^2+6x+20-8x-12)$ | |
| $=$ | $\text{e}^{-0,5x}(2x^2-2x+8)$. |
| $y$ | $=$ | $f'(0)(x-0)+f(0)$ | |
| ssi | $y$ | $=$ | $8x-40$. |
| > Dériver(Dériver(exp(-0.5x)*(-4x^2-12x-40))) |
| >> exp(-0.5x)*(-x^2+5x-6) |
| > Factoriser(exp(-0.5x)*(-x^2+5x-6))) |
| >> exp(-0.5x)*(2-x)(x-3) |
| $f(x)$ | $\leq$ | $8x-40$ | |
| $\text{e}^{-0,5x}(-4x^2-12x-40)$ | $\leq$ | $8x-40$ | |
| $\text{e}^{-0,5x}$ | $\geq$ | $\dfrac{8x-40}{-4x^2-12x-40}$ | en divisant chaque côté par $-4x^2-12x-40 < 0$ |
| $\text{e}^{-0,5x}$ | $\geq$ | $\dfrac{-4(-2x+10)}{-4(x^2+3x+10)}$ | |
| $\text{e}^{-0,5x}$ | $\geq$ | $\dfrac{-2x+10}{x^2+3x+10}$ | |
| $\text{e}^{-0,5x}$ | $\geq$ | $\dfrac{10-2x}{x^2+3x+10}$. |