| $\text{det}\left(\overrightarrow{AB} \, , \overrightarrow{AC}\right)$ | $=$ | $\text{det}\left(\begin{pmatrix} -2 \\ 22 \end{pmatrix} \,, \begin{pmatrix} 5 \\ -60 \end{pmatrix} \right)$ |
| $=$ | $-2\times(-60)-22\times 5$ | |
| $=$ | $10$ |
| $\overrightarrow{AD}$ | $=$ | $\overrightarrow{AB}+\overrightarrow{AC}$ |
| $\begin{pmatrix} x_D-x_A \\ y_D-y_A \end{pmatrix}$ | $=$ | $\begin{pmatrix} -2 \\ 22 \end{pmatrix}+\begin{pmatrix} 5 \\ -60 \end{pmatrix}$ |
| $\begin{pmatrix} x_D-10 \\ y_D+17 \end{pmatrix}$ | $=$ | $\begin{pmatrix} 3 \\ -38 \end{pmatrix}$ |
| $\text{det}\left(\overrightarrow{CD} \, , \overrightarrow{CH}\right)$ | $=$ | $\text{det}\left(\begin{pmatrix} x_D-x_C \\ y_D-y_C \end{pmatrix} \,, \begin{pmatrix} x_H-x_C \\ y_H-y_C \end{pmatrix} \right)$ |
| $=$ | $\text{det}\left(\begin{pmatrix} -2-2 \\ -1,5-(-0,5) \end{pmatrix} \,, \begin{pmatrix} -\frac{32}{17}-2 \\ -\frac{25}{17}+0,5 \end{pmatrix} \right)$ | |
| $=$ | $\text{det}\left(\begin{pmatrix} -4 \\ -1 \end{pmatrix} \,, \begin{pmatrix} -\frac{66}{17} \\ -\frac{33}{34} \end{pmatrix} \right)$ | |
| $=$ | $-4\times\left(-\dfrac{33}{34}\right) - (-1)\times\left( -\dfrac{66}{17}\right)$ | |
| $=$ | $0$. |
| $\mathcal{A}_{ABCD}$ | $=$ | $AB\times AH$ |
| $=$ | $||\overrightarrow{AB}||\times \sqrt{\dfrac{361}{17}}$ | |
| $=$ | $\left\lVert\begin{pmatrix} 4 \\ 1 \end{pmatrix}\right\rVert\times \sqrt{\dfrac{361}{17}}$ | |
| $=$ | $\sqrt{4^2+1^2}\times \sqrt{\dfrac{361}{17}}$ | |
| $=$ | $\sqrt{17}\times\dfrac{\sqrt{361}}{\sqrt{17}}$ | |
| $=$ | $\sqrt{361}$ | |
| $=$ | $19$. |
| $\left|\text{det}(\overrightarrow{AB}, \, \overrightarrow{AD})\right|$ | $=$ | $\left| \text{det}\left( \begin{pmatrix} 4 \\ 1 \end{pmatrix}\, , \begin{pmatrix} x_D-x_A \\ y_D-y_A \end{pmatrix} \right) \right|$ |
| $=$ | $\left| \text{det}\left( \begin{pmatrix} 4 \\ 1 \end{pmatrix}\, , \begin{pmatrix} 1 \\ -4,5 \end{pmatrix} \right) \right|$ | |
| $=$ | $\left| 4\times(-4,5)-1\times 1 \right|$ | |
| $=$ | $\left| -19 \right|$ | |
| $=$ | $19$. |