| $AC^2$ | $=$ | $(x_C-x_A)^2+(y_C-y_A)^2$ |
| $=$ | $(-3-0)^2+(-1-2)^2$ | |
| $=$ | $9+9$ | |
| $=$ | $18$ |
| $AB^2$ | $=$ | $(x_B-x_A)^2+(y_B-y_A)^2$ |
| $=$ | $(2-0)^2+(0-2)^2$ | |
| $=$ | $4+4$ | |
| $=$ | $8$ |
| $BC^2$ | $=$ | $(x_C-x_B)^2+(y_C-y_B)^2$ |
| $=$ | $(-3-2)^2+(-1-0)^2$ | |
| $=$ | $25+1$ | |
| $=$ | $26$ |
| $x_A$ | $=$ | $\dfrac{x_B+x_M}{2}$ |
| $-3$ | $=$ | $\dfrac{4+x_M}{2}$ |
| $-3\times2$ | $=$ | $4+x_M$ |
| $-6$ | $=$ | $4+x_M$ |
| $-6-4$ | $=$ | $x_M$ |
| $x_M$ | $=$ | $-10$. |
| $y_A$ | $=$ | $\dfrac{y_B+y_M}{2}$ |
| $2$ | $=$ | $\dfrac{1+y_M}{2}$ |
| $2\times2$ | $=$ | $1+y_M$ |
| $4$ | $=$ | $1+y_M$ |
| $4-1$ | $=$ | $y_M$ |
| $y_M$ | $=$ | $3$. |
| $x_A$ | $=$ | $\dfrac{x_C+x_N}{2}$ |
| $-3$ | $=$ | $\dfrac{-2+x_N}{2}$ |
| $-3\times2$ | $=$ | $-2+x_N$ |
| $-6$ | $=$ | $-2+x_N$ |
| $-6+2$ | $=$ | $x_N$ |
| $x_N$ | $=$ | $-4$. |
| $y_A$ | $=$ | $\dfrac{y_C+y_N}{2}$ |
| $2$ | $=$ | $\dfrac{3+y_N}{2}$ |
| $2\times2$ | $=$ | $3+y_N$ |
| $4$ | $=$ | $3+y_N$ |
| $4-3$ | $=$ | $y_N$ |
| $y_N$ | $=$ | $1$. |
| $OB^2$ | $=$ | $(x_B-X_O)^2+(y_B-y_O)^2$ |
| $=$ | $(x_B-0)^2+(y_B-0)^2$ | |
| $=$ | $x_B^2+y_B^2$ | |
| $=$ | $0^2+12^2$ | |
| $=$ | $144$. |