-->
| $u_{n+1}$ | $=$ | $p_{n+1}-\dfrac{3}{4}$ |
| $=$ | $\dfrac{1}{5}p_n+\dfrac{3}{5}-\dfrac{3}{4}$ | |
| $=$ | $\dfrac{1}{5}p_n-\dfrac{3}{20}$ | |
| $=$ | $\dfrac{1}{5}\left(p_n-\dfrac{3}{4}\right)$ | |
| $=$ | $\dfrac{1}{5}u_n$. |
| $f'(x)$ | $=$ | $u'(x)v(x)+u(x)v'(x)$ |
| $=$ | $5x^4(1-x)+x^5\times(-1)$ | |
| $=$ | $5x^4-5x^5-x^5$ | |
| $=$ | $5x^4-6x^5$ | |
| $=$ | $x^4(5-6x)$. |
| $y$ | $=$ | $f'(1)(x-1)+f(1)$ |
| $y$ | $=$ | $-1(x-1)+0$ |
| $y$ | $=$ | $-x+1$. |
| $0,4$ | $ < $ | $\alpha$ | $ < $ | $0,5$ |
| $0,44$ | $ < $ | $\alpha$ | $ < $ | $0,45$ |
| $n$ | $a_n$ | $b_n$ |
| $0$ | $1$ | $2$ |
| $1$ | ||
| $2$ | ||
| $3$ | ||
| $4$ | Allez l'OM!!!! | Allez l'OM!!!! |
| $n$ | $a_n$ | $b_n$ |
| $0$ | $1$ | $2$ |
| $1$ | $1$ | $1,5$ |
| $2$ | $1,3333$ | $1,4167$ |
| $3$ | $1.4118$ | $1.4142$ |
| $4$ | $1.4142$ | $1.4142$ |