-->
| $A$ | $=$ | $3+4\times( 5-3\times( 2+4\times(-7) ) )$ |
| $=$ | $3+4\times( 5-3\times( 2 -28 ) )$ | |
| $=$ | $3+4\times( 5-3\times( -26 ) )$ | |
| $=$ | $3+4\times( 5+78 )$ | |
| $=$ | $3+4\times83$ | |
| $=$ | $3+332$ | |
| $=$ | $335$. |
| $B$ | $=$ | $(4\times(3-8)-7\times 3)\times 2-(7-5\times(3-4\times 3+7))$ |
| $=$ | $(4\times(-5)-21)\times 2-(7-5\times(3-12+7))$ | |
| $=$ | $(-20-21)\times 2-(7-5\times(-2))$ | |
| $=$ | $-41\times 2-(7+10)$ | |
| $=$ | $-82-17$ | |
| $=$ | $-99$. |
| $C$ | $=$ | $6+3\times(-7)+(6+3\times(2-4\times(3-5\times 4+11-5+23\times(2\times 4-7+4\times 6))))$ |
| $=$ | $6-21+(6+3\times(2-4\times(3-20+6+23\times(8-7+24))))$ | |
| $=$ | $-15+(6+3\times(2-4\times(-11+23\times25)))$ | |
| $=$ | $-15+(6+3\times(2-4\times(-11+575)))$ | |
| $=$ | $-15+(6+3\times(2-4\times564))$ | |
| $=$ | $-15+(6+3\times(2-2\,256))$ | |
| $=$ | $-15+(6+3\times(-2\,254))$ | |
| $=$ | $-15+(6-6\,762))$ | |
| $=$ | $-15-6\,756$ | |
| $=$ | $-6\,771$. |
| $A$ | $=$ | $\dfrac{2}{3}-\dfrac{2}{5}\times\dfrac{3}{2}$ |
| $=$ | $\dfrac{2}{3}-\dfrac{3}{5}$ | |
| $=$ | $\dfrac{10}{15}-\dfrac{9}{15}$ | |
| $=$ | $\dfrac{1}{15}$. |
| $B$ | $=$ | $3-\dfrac{3}{5}\times\dfrac{1}{2}+6\times\dfrac{4}{3}$ |
| $=$ | $3-\dfrac{3}{10}+8$ | |
| $=$ | $11-\dfrac{3}{10}$ | |
| $=$ | $\dfrac{11}{1}-\dfrac{3}{10}$ | |
| $=$ | $\dfrac{110}{10}-\dfrac{3}{10}$ | |
| $=$ | $\dfrac{107}{10}$. |
| $C$ | $=$ | $-\dfrac{2}{7}+3\times\left(\dfrac{4}{3}+\dfrac{1}{2}\right)$ |
| $=$ | $-\dfrac{2}{7}+3\times\left(\dfrac{8}{6}+\dfrac{3}{6}\right)$ | |
| $=$ | $-\dfrac{2}{7}+3\times\dfrac{11}{6}$ | |
| $=$ | $-\dfrac{2}{7}+\dfrac{11}{2}$ | |
| $=$ | $-\dfrac{4}{14}+\dfrac{77}{14}$ | |
| $=$ | $\dfrac{73}{14}$. |
| $D$ | $=$ | $\dfrac{3}{4}\times\left(\dfrac{5}{7}-\dfrac{4}{8}\times\dfrac{2}{6}\right)$ |
| $=$ | $\dfrac{3}{4}\times\left(\dfrac{5}{7}-\dfrac{1}{6}\right)$ | |
| $=$ | $\dfrac{3}{4}\times\left(\dfrac{30}{42}-\dfrac{7}{42}\right)$ | |
| $=$ | $\dfrac{3}{4}\times\dfrac{23}{42}$ | |
| $=$ | $\dfrac{3}{4}\times\dfrac{23}{3\times14}$ | |
| $=$ | $\dfrac{23}{4\times14}$ | |
| $=$ | $\dfrac{23}{56}$. |
| $4$ | $6$ | ||
| $12$ | $33$ | $7$ |
| $4$ | $6$ | ||
| $12$ | $33$ | $7$ |
| $23$ | $46$ | ||
| $5$ | $11$ | $7$ |
| $23$ | $46$ | ||
| $5$ | $11$ | $7$ |
| $A$ | $=$ | $3\times\left(4x+\dfrac{4}{7}\right)$ |
| $=$ | $3\times(4x)+3\times\dfrac{4}{7}$ | |
| $=$ | $12x+\dfrac{12}{7}$. |
| $B$ | $=$ | $x(4-3x)$ |
| $=$ | $4x-3x^2$ | |
| $=$ | $-3x^2+4x$. |
| $C$ | $=$ | $(2y-1)(4y+5)$ |
| $=$ | $8y^2+10y-4y-5$ | |
| $=$ | $8y^2+6y-5$. |
| $D$ | $=$ | $5x+(3-2x)(3x+2)-7x^2$ |
| $=$ | $5x+9x+6-6x^2-4x-7x^2$ | |
| $=$ | $-13x^2+10x+6$. |
| $E$ | $=$ | $(2t-1)(3-2t)(t+4)$ |
| $=$ | $(2t-1)(3t+12-2t^2-8t)$ | |
| $=$ | $(2t-1)(-2t^2-5t+12)$ | |
| $=$ | $-4t^3-10t^2+24t+2t^2+5t-12$ | |
| $=$ | $-4t^3-8t^2+29t-12$. |
| $A$ | $=$ | $\textcolor{red}{(x+3)}(4x-3)+\textcolor{red}{(x+3)}(2x-2)$ |
| $=$ | $(x+3)((4x-3)+(2x-2))$ | |
| $=$ | $(x+3)(4x-3+2x-2)$ | |
| $=$ | $(x+3)(6x-5)$. |
| $B$ | $=$ | $\textcolor{red}{(2x-5)}(x+2)-\textcolor{red}{(2x-5)}(4-3x)$ |
| $=$ | $(2x-5)((x+2)-(4-3x))$ | |
| $=$ | $(2x-5)(x+2-4+3x)$ | |
| $=$ | $(2x-5)(4x-2)$. |
| $C$ | $=$ | $\textcolor{red}{(5-t)}(3t+4)+(3t-2)\textcolor{red}{(5-t)}-\textcolor{red}{(5-t)}(4-3t)$ |
| $=$ | $(5-t)( (3t+4)+(3t-2)-(4-3t))$ | |
| $=$ | $(5-t)( 3t+4+3t-2-4+3t)$ | |
| $=$ | $(5-t)( 9t-2)$. |
| $D$ | $=$ | $(1-x)(2x-7)+(x-1)(4x+3)$ |
| $=$ | $(1-x)(2x-7)-(1-x)(4x+3)$ | |
| $=$ | $\textcolor{red}{(1-x)}(2x-7)-\textcolor{red}{(1-x)}(4x+3)$ | |
| $=$ | $(1-x)((2x-7)-(4x+3))$ | |
| $=$ | $(1-x)(2x-7-4x-3)$ | |
| $=$ | $(1-x)(-2x-10)$. |
| $E$ | $=$ | $(3x-4)(2x+7)-(4x+14)(x+9)$ |
| $=$ | $(3x-4)(2x+7)-2(2x+7)(x+9)$ | |
| $=$ | $(3x-4)\textcolor{red}{(2x+7)}-2\textcolor{red}{(2x+7)}(x+9)$ | |
| $=$ | $(2x+7)((3x-4)-2(x+9))$ | |
| $=$ | $(2x+7)(3x-4-2x-18)$ | |
| $=$ | $(2x+7)(x-22)$. |
| $D$ | $=$ | $2x^2+(2x-5)^2+(3x-7)(x+5)$ |
| $=$ | $2x^2+\textcolor{red}{(2x-5)^2}+(3x-7)(x+5)$ | |
| $=$ | $2x^2+\textcolor{red}{4x^2-20x+25}+(3x-7)(x+5)$ | |
| $=$ | $2x^2+\textcolor{red}{4x^2-20x+25}+3x^2+15x-7x-35$ | |
| $=$ | $2x^2+4x^2-20x+25+3x^2+15x-7x-35$ | |
| $=$ | $2x^2+4x^2+3x^2-20x+15x-7x-35+25$ | |
| $=$ | $9x^2-12x-10$. |
| $d$ | $=$ | $2\sqrt{2}-\sqrt{18}$ |
| $=$ | $2\sqrt{2}-\sqrt{9\times2}$ | |
| $=$ | $2\sqrt{2}-\sqrt{9}\times\sqrt{2}$ | |
| $=$ | $2\sqrt{2}-3\sqrt{2}$ | |
| $=$ | $-\sqrt{2}$. |
| $e$ | $=$ | $\sqrt{45}+3\sqrt{20}-3\sqrt{5}$ |
| $=$ | $\sqrt{9\times 5}+3\sqrt{4\times5}-3\sqrt{5}$ | |
| $=$ | $\sqrt{9}\times\sqrt{5}+3\sqrt{4}\times\sqrt{5}-3\sqrt{5}$ | |
| $=$ | $3\sqrt{5}+3\times2\sqrt{5}-3\sqrt{5}$ | |
| $=$ | $3\sqrt{5}+6\sqrt{5}-3\sqrt{5}$ | |
| $=$ | $6\sqrt{5}$. |
| $a$ | $=$ | $(1+\sqrt{2})^2$ |
| $=$ | $1^2+2\sqrt{2}+(\sqrt{2})^2$ | |
| $=$ | $1+2\sqrt{2}+2$ | |
| $=$ | $3+2\sqrt{2}$. |
| $b$ | $=$ | $(\sqrt{3}-\sqrt{2})^2$ |
| $=$ | $(\sqrt{3})^2-2\sqrt{3}\times\sqrt{2}+(\sqrt{2})^2$ | |
| $=$ | $3-2\sqrt{3\times2}+2$ | |
| $=$ | $5-2\sqrt{6}$ |
| $c$ | $=$ | $(2+3\sqrt{5})^2$ |
| $=$ | $2^2+2\times2\times3\sqrt{5}+(3\sqrt{5})^2$ | |
| $=$ | $4+12\sqrt{5}+3^2\times\sqrt{5}^2$ | |
| $=$ | $4+12\sqrt{5}+9\times5$ | |
| $=$ | $4+12\sqrt{5}+45$ | |
| $=$ | $49+12\sqrt{5}$. |
| $d$ | $=$ | $(\sqrt{5}-2\sqrt{3})(\sqrt{5}+2\sqrt{3})$ |
| $d$ | $=$ | $(\sqrt{5})^2-(2\sqrt{3})^2$ |
| $d$ | $=$ | $5-2^2\times\sqrt{3}^2$ |
| $d$ | $=$ | $5-4\times3$ |
| $d$ | $=$ | $5-12$ |
| $d$ | $=$ | $-7$. |
| $2x+3$ | $=$ | $5$ |
| $2x$ | $=$ | $5-3$ |
| $2x$ | $=$ | $2$ |
| $x$ | $=$ | $\dfrac{2}{2}$ |
| $x$ | $=$ | $1$. |
| $2x-7$ | $=$ | $3x+1$ |
| $2x-3x$ | $=$ | $1+7$ |
| $-x$ | $=$ | $8$ |
| $x$ | $=$ | $-8$. |
| $4-2t$ | $=$ | $\dfrac{3}{5}-7t$ |
| $-2t+7t$ | $=$ | $\dfrac{3}{5}-4$ |
| $5t$ | $=$ | $\dfrac{3}{5}-\dfrac{20}{5}$ |
| $5t$ | $=$ | $-\dfrac{17}{5}$ |
| $t$ | $=$ | $-\dfrac{17}{5}\times\dfrac{1}{5}$ |
| $t$ | $=$ | $-\dfrac{17}{25}$. |
| $5\times(2t-3)$ | $=$ | $4\times(4-3t)+5t$ |
| $10t-15$ | $=$ | $16-12t+5t$ |
| $10t-15$ | $=$ | $16-7t$ |
| $10t+7t$ | $=$ | $16+15$ |
| $17t$ | $=$ | $31$ |
| $t$ | $=$ | $\dfrac{31}{17}$. |
| $\dfrac{x-3}{2}$ | $=$ | $\dfrac{5-4x}{3}$ |
| $\dfrac{x-3}{\textcolor{red}{2}}$ | $=$ | $\dfrac{5-4x}{\textcolor{blue}{3}}$ |
| $\textcolor{blue}{3}(x-3)$ | $=$ | $\textcolor{red}{2}(5-4x)$ |
| $3x-9$ | $=$ | $10-8x$ |
| $3x+8x$ | $=$ | $10+9$ |
| $11x$ | $=$ | $19$ |
| $x$ | $=$ | $\dfrac{19}{11}$. |
| $x+3=0$ | ou | $2x-7=0$ |
| $x=-3$ | ou | $2x=7$ |
| $x=\dfrac{7}{2}$. |
| $2t-1=0$ | ou | $5-3t=0$ |
| $2t=1$ | ou | $-3t=-5$ |
| $t=\dfrac{1}{2}$ | ou | $t=\dfrac{-5}{-3}=\dfrac{5}{3}$. |
| $\dfrac{2}{3}x+3=0$ | ou | $2-3x=0$ |
| $\dfrac{2}{3}x=-3$ | ou | $-3x=-2$ |
| $x=-3\times\dfrac{3}{2}$ | ou | $x=\dfrac{-2}{-3}$ |
| $x=-\dfrac{9}{2}$ | ou | $x=\dfrac{2}{3}$ |
| $3x+2=0$ | ou | $x+5-6x$ |
| $3x=-2$ | ou | $-5x+5=0$ |
| $x=-\dfrac{2}{3}$ | ou | $-5x=-5$ |
| $x=\dfrac{-5}{-5}$ $=$ $1$. |
| $3x$ | $>$ | $4$ |
| $x$ | $>$ | $\dfrac{4}{3}$. |
| $-4x$ | $\geq$ | $9$ | |
| $x$ | $\leq$ | $\dfrac{9}{-4}$ |
|
| $x$ | $\leq$ | $-\dfrac{9}{4}$. |
| $2x+4$ | $\leq$ | $7x+8$ | |
| $2x-7x$ | $\leq $ | $8-4$ | |
| $-5x$ | $\leq $ | $4$ | |
| $x$ | $\geq $ | $-\dfrac{4}{5}$ |
|
| $5-3x$ | $<$ | $4x+9$ | |
| $-3x-4x$ | $< $ | $9-5$ | |
| $-7x$ | $< $ | $4$ | |
| $x$ | $> $ | $-\dfrac{4}{7}$ |
|
| $3\left(2+\dfrac{5}{3}x\right)-7$ | $\leq$ | $9x+1$ | |
| $6+5x-7$ | $\leq$ | $9x+1$ | |
| $5x-1$ | $\leq$ | $9x+1$ | |
| $5x-9x$ | $\leq$ | $1+1$ | |
| $-4x$ | $\leq$ | $2$ | |
| $x$ | $\geq$ | $\dfrac{2}{-4}$ |
|
| $x$ | $\geq$ | $-\dfrac{1}{2}$. |