-->
| $\left(26+\dfrac{1}{2}+\dfrac{1}{3}\right)^2-720$ | $=$ | $\left(26+\dfrac{5}{6}\right)^2-720$ |
| $=$ | $26^2+2\times26\times\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2-720$ | |
| $=$ | $676+\dfrac{130}{3}+\dfrac{25}{36}-720$ | |
| $=$ | $\dfrac{1}{36}$. |
| $u_{n+1}-u_n$ | $=$ | $\dfrac{1}{2}\left( u_n+\dfrac{a}{u_n}\right)-u_n$ |
| $=$ | $\dfrac{1}{2}\left( u_n+\dfrac{a}{u_n}\right)-\dfrac{1}{2}\times 2u_n$ | |
| $=$ | $\dfrac{1}{2}\left( u_n+\dfrac{a}{u_n}- 2u_n\right)$ | |
| $=$ | $\dfrac{1}{2}\left( \dfrac{a}{u_n}- u_n\right)$ | |
| $=$ | $\dfrac{1}{2}\left( \dfrac{a-u_n^2}{u_n}\right)$. |
| $\ell$ | $=$ | $f(\ell)$ |
| $\ell$ | $=$ | $\dfrac{1}{2}\left(\ell+\dfrac{a}{\ell}\right)$ |
| $2\ell$ | $=$ | $\ell+\dfrac{a}{\ell}$ |
| $0$ | $=$ | $\dfrac{a}{\ell}-\ell$ |
| $\dfrac{a}{\ell}-\ell$ | $=$ | $0$ |
| $\dfrac{a-\ell^2}{\ell}$ | $=$ | $0$ |
| $u_{n+1}-\sqrt{a}$ | $=$ | $\dfrac{1}{2}\left(u_n+\dfrac{a}{u_n} \right)-\sqrt{a}$ |
| $=$ | $\dfrac{1}{2}\left(u_n+\dfrac{a}{u_n} \right)-\dfrac{1}{2}\times 2\sqrt{a}$ | |
| $=$ | $\dfrac{1}{2}\left(u_n+\dfrac{a}{u_n}-2\sqrt{a} \right)$ | |
| $=$ | $\dfrac{1}{2}\left(\dfrac{u_n^2+a-2u_n\sqrt{a}}{u_n} \right)$ | |
| $=$ | $\dfrac{1}{2}\dfrac{(u_n-\sqrt{a})^2}{u_n}$. |
| $n$ | $u_n$ | $\sqrt{a}$ | $u_n-\sqrt{a}$ |
| $0$ | $27$ | $26,832\,815\,729\,997$ | $0,167\,184\,270\,003$ |
| $1$ | $26,833\,333\,333\,333$ | $26,832\,815\,729\,997$ | $0,000\,517\,603\,336$ |
| $2$ | $26,832\,815\,734\,99$ | $26,832\,815\,729\,997$ | $0,000\,000\,004\,992$ |
| $3$ | $26,832\,815\,729\,997$ | $26,832\,815\,729\,997$ | $0$ |
| $4$ | $26,832\,815\,729\,997$ | $26,832\,815\,729\,997$ | $0$ |
| $AH^2$ | $=$ | $\overrightarrow{AH} \cdot \overrightarrow{AH}$ |
| $=$ | $\left(\overrightarrow{AB}+\overrightarrow{BH}\right) \cdot \left(\overrightarrow{AC}+\overrightarrow{CH}\right)$ | |
| $=$ | $\overrightarrow{AB}\cdot\overrightarrow{AC}+\overrightarrow{AB}\cdot\overrightarrow{CH}+\overrightarrow{BH}\cdot\overrightarrow{AC}+\overrightarrow{BH}\cdot\overrightarrow{CH}$ | |
| $=$ | $0+\overrightarrow{AB}\cdot\overrightarrow{CH}+\overrightarrow{BH}\cdot\overrightarrow{AC}+\overrightarrow{BH}\cdot\overrightarrow{CH}$ | |
| $=$ | $\overrightarrow{HB}\cdot\overrightarrow{CH}+\overrightarrow{BH}\cdot\overrightarrow{HC}+\overrightarrow{BH}\cdot\overrightarrow{CH}$ | |
| $=$ | $\overrightarrow{HB}\cdot\overrightarrow{CH}+0$ | |
| $=$ | $\overrightarrow{HB}\cdot\overrightarrow{CH}+\overrightarrow{BH}\cdot\left(\overrightarrow{HC}+\overrightarrow{CH} \right)$ | |
| $=$ | $\overrightarrow{HB}\cdot\overrightarrow{CH}+\overrightarrow{BH}\cdot\overrightarrow{0}$ | |
| $=$ | $HB\times HC$. |